skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Martin, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2026
  2. ABSTRACT Numerous management methods are deployed to try to mitigate the destructive impact of weedy and invasive populations. Yet, such management practices may cause these populations to inadvertently evolve in ways that have consequence on their invasiveness. To test this idea, we conducted a two‐step field mesocosm experiment; we evolved genetically diverse populations of the duckweedLemna minorto targeted removal management and then tested the impact of that evolution in replicated invasions into experimental resident communities. We found that evolution in response to management increased invasiveness compared to populations evolved without management. This evolution in response to management had little effect on the impact of the invader on the resident species. These results illustrate the potential eco‐evolutionary consequences of management practices. Mitigating evolution to physical removal, in addition to pesticides, may be important to the long‐term success of integrated pest management. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Humans can recognize their whole-body movements even when displayed as dynamic dot patterns. The sparse depiction of whole-body movements, coupled with a lack of visual experience watching ourselves in the world, has long implicated nonvisual mechanisms to self-action recognition. Using general linear modeling and multivariate analyses on human brain imaging data from male and female participants, we aimed to identify the neural systems for this ability. First, we found that cortical areas linked to motor processes, including frontoparietal and primary somatomotor cortices, exhibit greater engagement and functional connectivity when recognizing self-generated versus other-generated actions. Next, we show that these regions encode self-identity based on motor familiarity, even after regressing out idiosyncratic visual cues using multiple regression representational similarity analysis. Last, we found the reverse pattern for unfamiliar individuals: encoding localized to occipitotemporal visual regions. These findings suggest that self-awareness from actions emerges from the interplay of motor and visual processes. 
    more » « less
    Free, publicly-accessible full text available January 15, 2026
  4. Free, publicly-accessible full text available January 15, 2026
  5. Vision-language models are integral to computer vision research, yet many high-performing models remain closed-source, obscuring their data, design and training recipe. The research community has responded by using distillation from black-box models to label training data, achieving strong benchmark results, at the cost of measurable scientific progress. However, without knowing the details of the teacher model and its data sources, scientific progress remains difficult to measure. In this paper, we study building a Perception Language Model (PLM) in a fully open and reproducible framework for transparent research in image and video understanding. We analyze standard training pipelines without distillation from proprietary models and explore large-scale synthetic data to identify critical data gaps, particularly in detailed video understanding. To bridge these gaps, we release 2.8M human-labeled instances of fine-grained video question-answer pairs and spatio-temporally grounded video captions. Additionally, we introduce PLM-VideoBench, a suite for evaluating challenging video understanding tasks focusing on the ability to reason about "what", "where", "when", and "how" of a video. We make our work fully reproducible by providing data, training recipes, code & models. 
    more » « less
    Free, publicly-accessible full text available July 23, 2026
  6. Davoult, D (Ed.)
    Abstract: Several levels of the Lorraine Group (Upper Ordovician) in upstate New York (USA) have yielded low-diversity, exceptionally preserved, pyritized invertebrate assemblages dominated by the trilobite Triarthrus eatoni. Sedimentological and taphonomic features suggest dysoxic bottom-water conditions, with limited transport and rapid burial by distal turbidites. Echinoderms are extremely rare in these strata. Here we report, for the first time, the occurrence of the anomalocystitid mitrate Enoploura popei in the Konservat-Lagerstätte of Beecher's Trilobite Bed. A pyritized specimen of this stylophoran was CT-scanned and three-dimensionally reconstructed. The mitrate is laterally compressed, but its 3D-rendering provided several insights into its internal anatomy and taphonomy. The recurved position of the single feeding appendage (aulacophore) is consistent with ligament-induced, post mortem contraction. This posture and the collapse of one lateral series of cover plates indicate that the individual was probably not buried alive. Nevertheless, a portion of the distal aulacophore shows clear evidence of exceptionally preserved soft parts (ambulacral system) in between two sets of slightly open cover plates and the underlying ossicles. One of the most intriguing features of this specimen is its close association with a sinuous, elongated, pyritized trace fossil, which enters the stylophoran through the mouth and disappears into the proximal aulacophore. In marked contrast with other skeletal parts of the specimen (theca and distal part of the aulacophore), the proximal rings of the aulacophore are heavily disrupted and disarticulated. Proximal rings are usually decay-resistant skeletal regions in stylophorans. Therefore, close association of this disrupted region with a trace fossil penetrating it suggests the action of an unknown infaunal scavenger. Location of this trace suggests targeting during early decay of the large muscular proximal aulacophore. 
    more » « less
  7. Due to its excellent optical properties, such as low absorption and scattering, amorphous Ta 2 O 5 is commonly used as an optical coating material, often in combination with SiO 2 layers to produce a highly reflective stack. However, the high mechanical loss of Ta 2 O 5 limits the thermal-noise performance of such coatings when used in precision measurement applications. Doping with TiO 2 has previously been shown to slightly reduce the mechanical loss, but it is still very high compared to many other materials, particularly at low temperatures. In this paper, we present a detailed study of different heat treatment temperatures and of Ti concentrations of up to nominally 75%. We show a significant mechanical-loss reduction for the mixture with the highest Ti cation content, which crystallized after heat treatment at 500°C. The resulting loss is much lower than that of pure TiO 2 or that of Ta 2 O 5 after crystallization, making further studies highly interesting, in particular investigations of scattering which may pose a major drawback for optical applications. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  8. Plant microbiomes that comprise diverse microorganisms, including prokaryotes, eukaryotes and viruses, are the key determinants of plant population dynamics and ecosystem function. Despite their importance, little is known about how species interactions (especially trophic interactions) between microbes from different domains modify the importance of microbiomes for plant hosts and ecosystems. Using the common duckweedLemna minor, we experimentally examined the effects of predation (by bacterivorous protists) and parasitism (by bacteriophages) within microbiomes on plant population size and ecosystem phosphorus removal. Our results revealed that the addition of predators increased plant population size and phosphorus removal, whereas the addition of parasites showed the opposite pattern. The structural equation modelling further pointed out that predation and parasitism affected plant population size and ecosystem function via distinct mechanisms that were both mediated by microbiomes. Our results highlight the importance of understanding microbial trophic interactions for predicting the outcomes and ecosystem impacts of plant–microbiome symbiosis. 
    more » « less
  9. Abstract PremisePolyploidy is a widespread mutational process in angiosperms that may alter population performance of not only plants but also their interacting species. Yet, knowledge of whether polyploidy affects plant–herbivore dynamics is scarce. Here, we tested whether aphid herbivores exhibit preference for diploid or neopolyploid plants, whether polyploidy impacts plant and herbivore performance, and whether these interactions depend on the plant genetic background. MethodsUsing independently synthesized neotetraploid strains paired with their diploid progenitors of greater duckweed (Spirodela polyrhiza), we evaluated the effect of neopolyploidy on duckweed's interaction with the water‐lily aphid (Rhopalosiphum nymphaeae). Using paired‐choice experiments, we evaluated feeding preference of the herbivore. We then evaluated the consequences of polyploidy on aphid and plant performance by measuring population growth over multiple generations. ResultsAphids preferred neopolyploids when plants were provided at equal abundances but not at equal surface areas, suggesting the role of plant population surface area in driving this preference. Additionally, neopolyploidy increased aphid population performance, but this result was dependent on the plant's genetic lineage. Lastly, the impact of herbivory on neopolyploid vs. diploid duckweed varied greatly with genetic lineage, where neopolyploids appeared to be variably tolerant compared to diploids, sometimes mirroring the effect on herbivore performance. ConclusionsBy experimentally testing the impacts of polyploidy on trophic species interactions, we showed that polyploidization can impact the preference and performance of herbivores on their plant hosts. These results have significant implications for the establishment and persistence of plants and herbivores in the face of plant polyploidy. 
    more » « less